References
[1] S. Cox, A. Sandall, L. Smith, M. Rossi, and K. Whelan, “Food additive emulsifiers: a review of their role in foods, legislation and classifications, presence in food supply, dietary exposure, and safety assessment,” Nutr. Rev., vol. 79, no. 6, pp. 726–741, May 2021, doi: 10.1093/nutrit/nuaa038.
[2] J. V. Martino, J. Van Limbergen, and L. E. Cahill, “The Role of Carrageenan and Carboxymethylcellulose in the Development of Intestinal Inflammation,” Front. Pediatr., vol. 5, p. 96, 2017, doi: 10.3389/fped.2017.00096.
[3] B. Chassaing et al., “Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome,” Nature, vol. 519, no. 7541, pp. 92–96, Mar. 2015, doi: 10.1038/nature14232.
[4] B. Chassaing, T. Van de Wiele, J. De Bodt, M. Marzorati, and A. T. Gewirtz, “Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation,” Gut, vol. 66, no. 8, pp. 1414–1427, Aug. 2017, doi: 10.1136/gutjnl-2016-313099.
[5] E. Rousta et al., “The Emulsifier Carboxymethylcellulose Induces More Aggressive Colitis in Humanized Mice with Inflammatory Bowel Disease Microbiota Than Polysorbate-80,” Nutrients, vol. 13, no. 10, p. 3565, Oct. 2021, doi: 10.3390/nu13103565.
[6] N. Daniel, A. T. Gewirtz, and B. Chassaing, “Akkermansia muciniphila counteracts the deleterious effects of dietary emulsifiers on microbiota and host metabolism,” Gut, vol. 72, no. 5, pp. 906–917, May 2023, doi: 10.1136/gutjnl-2021-326835.
[7] B. Chassaing et al., “Randomized Controlled-Feeding Study of Dietary Emulsifier Carboxymethylcellulose Reveals Detrimental Impacts on the Gut Microbiota and Metabolome,” Gastroenterology, vol. 162, no. 3, pp. 743–756, Mar. 2022, doi: 10.1053/j.gastro.2021.11.006.
[8] J. J. J. Loayza et al., “Effect of food additives on key bacterial taxa and the mucosa-associated microbiota in Crohn’s disease. The ENIGMA study,” Gut Microbes, vol. 15, no. 1, p. 2172670, 2023, doi: 10.1080/19490976.2023.2172670.
[9] M. T. Zangara et al., “Maltodextrin Consumption Impairs the Intestinal Mucus Barrier and Accelerates Colitis Through Direct Actions on the Epithelium,” Front. Immunol., vol. 13, p. 841188, 2022, doi: 10.3389/fimmu.2022.841188.
[10] A. Harusato, B. Chassaing, C. J. G. Dauriat, C. Ushiroda, W. Seo, and Y. Itoh, “Dietary Emulsifiers Exacerbate Food Allergy and Colonic Type 2 Immune Response through Microbiota Modulation,” Nutrients, vol. 14, no. 23, p. 4983, Nov. 2022, doi: 10.3390/nu14234983.
[11] S.-N. Yoon and B. Yoo, “Rheological Behaviors of Thickened Infant Formula Prepared with Xanthan Gum-Based Food Thickeners for Dysphagic Infants,” Dysphagia, vol. 32, no. 3, pp. 454–462, Jun. 2017, doi: 10.1007/s00455-017-9786-2.
[12] C. W. Woods, T. Oliver, K. Lewis, and Q. Yang, “Development of necrotizing enterocolitis in premature infants receiving thickened feeds using SimplyThick®,” J. Perinatol. Off. J. Calif. Perinat. Assoc., vol. 32, no. 2, pp. 150–152, Feb. 2012, doi: 10.1038/jp.2011.105.
[13] J. Beal, B. Silverman, J. Bellant, T. E. Young, and K. Klontz, “Late onset necrotizing enterocolitis in infants following use of a xanthan gum-containing thickening agent,” J. Pediatr., vol. 161, no. 2, pp. 354–356, Aug. 2012, doi: 10.1016/j.jpeds.2012.03.054.
[14] EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) et al., “Re-evaluation of xanthan gum (E 415) as a food additive,” EFSA J. Eur. Food Saf. Auth., vol. 15, no. 7, p. e04909, Jul. 2017, doi: 10.2903/j.efsa.2017.4909.
[15] M. K. Schnizlein, K. C. Vendrov, S. J. Edwards, E. C. Martens, and V. B. Young, “Dietary Xanthan Gum Alters Antibiotic Efficacy against the Murine Gut Microbiota and Attenuates Clostridioides difficile Colonization,” mSphere, vol. 5, no. 1, pp. e00708-19, Jan. 2020, doi: 10.1128/mSphere.00708-19.
[16] S. Naimi, E. Viennois, A. T. Gewirtz, and B. Chassaing, “Direct impact of commonly used dietary emulsifiers on human gut microbiota,” Microbiome, vol. 9, no. 1, p. 66, Mar. 2021, doi: 10.1186/s40168-020-00996-6.
[17] M. H. Rawi, A. Abdullah, A. Ismail, and S. R. Sarbini, “Manipulation of Gut Microbiota Using Acacia Gum Polysaccharide,” ACS Omega, vol. 6, no. 28, pp. 17782–17797, Jul. 2021, doi: 10.1021/acsomega.1c00302.
[18] W. Calame, A. R. Weseler, C. Viebke, C. Flynn, and A. D. Siemensma, “Gum arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner,” Br. J. Nutr., vol. 100, no. 6, pp. 1269–1275, Dec. 2008, doi: 10.1017/S0007114508981447.
[19] S. H. Baien et al., “Antimicrobial and Immunomodulatory Effect of Gum Arabic on Human and Bovine Granulocytes Against Staphylococcus aureus and Escherichia coli,” Front. Immunol., vol. 10, p. 3119, 2019, doi: 10.3389/fimmu.2019.03119.
[20] R. Babiker, T. H. Merghani, K. Elmusharaf, R. M. Badi, F. Lang, and A. M. Saeed, “Effects of Gum Arabic ingestion on body mass index and body fat percentage in healthy adult females: two-arm randomized, placebo controlled, double-blind trial,” Nutr. J., vol. 11, p. 111, Dec. 2012, doi: 10.1186/1475-2891-11-111.
[21] A. H. Jarrar et al., “The Effect of Gum Arabic (Acacia Senegal) on Cardiovascular Risk Factors and Gastrointestinal Symptoms in Adults at Risk of Metabolic Syndrome: A Randomized Clinical Trial,” Nutrients, vol. 13, no. 1, p. E194, Jan. 2021, doi: 10.3390/nu13010194.
[22] L. A. Kaddam and A. S. Kaddam, “Effect of Gum Arabic (Acacia senegal) on C-reactive protein level among sickle cell anemia patients,” BMC Res. Notes, vol. 13, no. 1, p. 162, Mar. 2020, doi: 10.1186/s13104-020-05016-2.
[23] D. A. M. A. Omer and F. M. A. Hilali, “Effect of Gum Arabic in Management of Malnourished Children Aged 6 – 59 Months,” J. Biol. Agric. Healthc., vol. 6, no. 24, p. 7, 2016.
[24] Q. Shang et al., “Carrageenan-induced colitis is associated with decreased population of anti-inflammatory bacterium, Akkermansia muciniphila, in the gut microbiota of C57BL/6J mice,” Toxicol. Lett., vol. 279, pp. 87–95, Sep. 2017, doi: 10.1016/j.toxlet.2017.07.904.
[25] K. Gerasimidis et al., “The impact of food additives, artificial sweeteners and domestic hygiene products on the human gut microbiome and its fibre fermentation capacity,” Eur. J. Nutr., vol. 59, no. 7, pp. 3213–3230, Oct. 2020, doi: 10.1007/s00394-019-02161-8.
[26] W. Wu et al., “Dietary κ-carrageenan facilitates gut microbiota-mediated intestinal inflammation,” Carbohydr. Polym., vol. 277, p. 118830, Feb. 2022, doi: 10.1016/j.carbpol.2021.118830.
[27] L. Feferman et al., “Carrageenan-Free Diet Shows Improved Glucose Tolerance and Insulin Signaling in Prediabetes: A Randomized, Pilot Clinical Trial,” J. Diabetes Res., vol. 2020, p. 8267980, 2020, doi: 10.1155/2020/8267980.
[28] S. Bhattacharyya et al., “A randomized trial of the effects of the no-carrageenan diet on ulcerative colitis disease activity,” Nutr. Healthy Aging, vol. 4, no. 2, pp. 181–192, Mar. 2017, doi: 10.3233/NHA-170023.
[29] J. K. Udani, B. B. Singh, M. L. Barrett, and V. J. Singh, “Proprietary arabinogalactan extract increases antibody response to the pneumonia vaccine: a randomized, double-blind, placebo-controlled, pilot study in healthy volunteers,” Nutr. J., vol. 9, p. 32, Aug. 2010, doi: 10.1186/1475-2891-9-32.
[30] J. K. Udani, “Immunomodulatory effects of ResistAidTM: A randomized, double-blind, placebo-controlled, multidose study,” J. Am. Coll. Nutr., vol. 32, no. 5, pp. 331–338, 2013, doi: 10.1080/07315724.2013.839907.
[31] L. Riede, B. Grube, and J. Gruenwald, “Larch arabinogalactan effects on reducing incidence of upper respiratory infections,” Curr. Med. Res. Opin., vol. 29, no. 3, pp. 251–258, Mar. 2013, doi: 10.1185/03007995.2013.765837.
[32] O. Chen, S. Sudakaran, T. Blonquist, E. Mah, S. Durkee, and A. Bellamine, “Effect of arabinogalactan on the gut microbiome: A randomized, double-blind, placebo-controlled, crossover trial in healthy adults,” Nutr. Burbank Los Angel. Cty. Calif, vol. 90, p. 111273, Oct. 2021, doi: 10.1016/j.nut.2021.111273.
[33] F. Magne et al., “The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients?,” Nutrients, vol. 12, no. 5, p. E1474, May 2020, doi: 10.3390/nu12051474.
[34] A. Passariello et al., “Randomised clinical trial: efficacy of a new synbiotic formulation containing Lactobacillus paracasei B21060 plus arabinogalactan and xilooligosaccharides in children with acute diarrhoea,” Aliment. Pharmacol. Ther., vol. 35, no. 7, pp. 782–788, Apr. 2012, doi: 10.1111/j.1365-2036.2012.05015.x.
[35] R. G. Nejrup, T. R. Licht, and L. I. Hellgren, “Fatty acid composition and phospholipid types used in infant formulas modifies the establishment of human gut bacteria in germ-free mice,” Sci. Rep., vol. 7, no. 1, p. 3975, Jun. 2017, doi: 10.1038/s41598-017-04298-0.
[36] L. Miclotte et al., “Dietary Emulsifiers Alter Composition and Activity of the Human Gut Microbiota in vitro, Irrespective of Chemical or Natural Emulsifier Origin,” Front. Microbiol., vol. 11, p. 577474, 2020, doi: 10.3389/fmicb.2020.577474.
[37] J. Zhang, S. Sturla, C. Lacroix, and C. Schwab, “Gut Microbial Glycerol Metabolism as an Endogenous Acrolein Source,” mBio, vol. 9, no. 1, pp. e01947-17, Jan. 2018, doi: 10.1128/mBio.01947-17.
[38] H.-C. Tsai et al., “Acrolein contributes to human colorectal tumorigenesis through the activation of RAS-MAPK pathway,” Sci. Rep., vol. 11, no. 1, p. 12590, Jun. 2021, doi: 10.1038/s41598-021-92035-z.